Биохимия физической работы. Частные пути обмена аминокислот Что такое креатинфосфат

Биохимия физической работы. Частные пути обмена аминокислот Что такое креатинфосфат



лиофилизат д/пригот. р-ра д/инф. 1 г: фл. 1 шт.
Рег. №: 18/08/2191 от 19.02.2014 - Действующее

Лиофилизат для приготовления раствора для инфузий в виде порошка белого или почти белого цвета, с возможной агрегацией частиц.

Факоны стеклянные (1) - коробки картонные.

Описание лекарственного препарата основано на официально утвержденной инструкции по применению препарата и сделано в 2019 году. Дата обновления: 23.05.2019 г.


Фармакологическое действие

Креатинфосфат (фосфокреатин) играет ключевую роль в энергетическом обеспечении механизма мышечного сокращения. В миокарде и в скелетных мышцах креатинфосфат является запасной формой биохимической энергии, которая используется для ресинтеза АТФ, за счет гидролиза обеспечивает энергией процесс сокращения мышц. При ишемии мышечной ткани содержание креатинфосфата в миоцитах быстро снижается, что является одной из ведущих причин нарушения сократимости. Креатинфосфат улучшает метаболизм миокарда и мышечной ткани, замедляет снижение сократительной способности сердечной мышцы при ишемии, обладает кардиопротекторным действием на ишемизированный миокард.

Экспериментальные кардиофармакологические исследования подтвердили метаболическую роль креатинфосфата и его защитные свойства по отношению к миокарду:

    а) введение креатинфосфата в/м оказывает дозозависимый защитный эффект при различных кардиомиопатиях, индуцированных изопреналином у крыс и голубей, тироксином у крыс, эметином у морских свинок, р-нитрофенолом у крыс;

    б) креатинфосфат оказывает положительное инотропное действие на изолированном сердце лягушки, морской свинки, крысы, а также в условиях дефицита глюкозы, кальция или передозировки калия;

    в) креатинфосфат противодействует отрицательному инотропному эффекту, индуцированному аноксией на изолированном предсердии морской свинки;

    г) добавление креатинфосфата в кардиоплегические растворы усиливает защиту миокарда на различных экспериментальных моделях, как на изолированном органе, так и in vivo:

    • на сердце крысы при сердечно-легочном шунтировании и ишемической остановке сердца перфузия с кардиоплегическими растворами с добавлением креатинфосфата в состояниях, как нормы, так и при гипотермии, защищает сердце от ишемического повреждения; этот защитный эффект при добавлении калия, магния и прокаина является оптимальным при концентрации креатинфосфата 10 ммоль/л;
    • на работающем изолированном сердце крысы, в условиях региональной ишемии (перевязка на 15 мин левой передней нисходящей коронарной артерии), предишемическое инфузионное введение креатинфосфата (10 ммоль/л) оказывает защитное действие против развития реперфузионной аритмии;
    • на изолированном сердце собаки и in vivo (на нормальном и гипертрофическом сердце) после остановки сердца с помощью гиперкалиевых растворов перфузия кардиоплегических растворов с креатинфосфатом выполняет защитную роль; при этом регистрируется снижение деградации АТФ и креатинфосфата, сохранение структуры митохондрий и сарколеммы, улучшение функционального восстановления после реперфузионной аритмии;
    • на сердце свиньи in vivo в условиях шунтирования кровообращения добавление креатинфосфата в кардиоплегические растворы обеспечивает наилучшую защиту миокарда;
    • д) креатинфосфат выполняет защитную роль при экспериментальном инфаркте миокарда и при коронарной окклюзии:

      • у собак во время экспериментального инфаркта миокарда, полученного путем перевязки огибающей артерии, введение креатинфосфата (200 мг/кг болюсно с последующей инфузией 5 мг/кг/мин) стабилизирует гемодинамические параметры, оказывает антиаритмический и противофибрилляторный эффекты, предупреждает снижение сократительной функции сердца при ишемии, тем самым ограничивая расширение зоны инфаркта;
      • у крыс в условиях наложения коронарной лигатуры креатинфосфат снижает частоту и продолжительность фибрилляции желудочков;
      • в/в вливание креатинфосфата уменьшает область инфаркта у кроликов и кошек после перевязки коронарной артерии;
      • е) кардиопротекторное действие креатинфосфата связанно со стабилизацией сарколеммы, сохранением клеточного пула адениннуклеотидов для ингибирования ферментов нуклеотидного катаболизма, препятствуя деградации фосфолипидов в ишемическом миокарде, может улучшить микроциркуляцию в ишемических зонах и ингибировать АДФ-индуцированную агрегацию тромбоцитов.

Фармакокинетика

У кроликов после однократного в/м введения креатинфосфата C max креатинфосфата в кровотоке, составляющее 25-28% от введенной дозы, наблюдается через 20-40 мин после введения. Концентрация креатинфосфата медленно снижается и через 250 мин после введения в кровотоке содержится 9% экзогенного креатинфосфата. После однократного в/м введения креатинфосфата наблюдается также повышение уровня АТФ. Эффект обнаруживается через 40 мин после введения и продолжается до 250 мин. При этом максимальное увеличение концентрации АТФ на 25% происходит через 100 мин после введения креатинфосфата. После в/в введения у кроликов креатинфосфат остается в кровотоке с постепенным уменьшением содержания в течение 30 мин. В этом случае также происходит увеличение в крови концентрации АТФ на 24% с возвращением к нормальному уровню через 300 мин.

У людей в условиях однократного в/в введения Т 1/2 креатинфосфата начинается от 0.09 до 0.2 ч. После введения креатинфосфата в дозе 5 г путем медленной инфузии содержание креатинфосфата в крови составляет около 5 нмоль/мл через 40 мин, а через 40 мин после введения креатинфосфата в дозе 10 г содержание креатинфосфата в крови составляет около 10 нмоль/мл. После в/м введения креатинфосфат появляется в кровотоке уже через 5 мин, достигая через 30 мин C max - около 10 нмоль/мл для дозы 500 мг и около 11-12 нмоль/мл для дозы 750 мг. Через 60 мин после введения концентрация креатинфосфата в крови снижается до 4-5 нмоль/мл. Через 120 мин после введения остаточное содержание экзогенного креатинфосфата составляет 1-2 нмоль/мл.

Показания к применению

В составе комбинированной терапии следующих заболеваний:

  • острого инфаркта миокарда;
  • хронической сердечной недостаточности;
  • интраоперационной ишемии миокарда;
  • интраоперационной ишемии нижних конечностей;
  • метаболических нарушений миокарда в условиях гипоксии;
  • в спортивной медицине для профилактики развития синдрома острого и хронического физического перенапряжения и улучшения адаптации спортсменов к экстремальным физическим нагрузкам.

Режим дозирования

Препарат вводят только внутривенно (в/в, струйно или капельно) в соответствии с назначением врача в течение 30-45 мин по 1 г 1-2 раза/сут.

Креатинфосфат вводят в максимально короткие сроки с момента проявления признаков ишемии, что улучшает прогноз заболевания.

Содержимое флакона растворяют в 10 мл воды для инъекций, 10 мл 0.9% раствора натрия хлорида для инфузий или 5% раствора глюкозы для инфузий. Интенсивно встряхивают флакон до полного растворения. Как правило, полное растворение лекарственного средства занимает не менее 3 мин.

Креатинфосфат применяют в составе кардиоплегических растворов в концентрации 10 ммоль/л (~2.1 г/л) для защиты миокарда во время операции на сердце. Добавляют в состав раствора непосредственно перед введением.

Острый инфаркт миокарда

  • 2-4 г препарата, разведенного в 50 мл воды для инъекций, в виде в/в быстрой инфузии с последующей в/в инфузией 8-16 г в 200 мл 5% раствора декстрозы (глюкозы) в течение 2 ч.
  • 2-4 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза/сут.
  • 2 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза/сут. При необходимости курс инфузий по 2 г препарата 2 раза/сут можно проводить в течение 6 дней. Наилучшие результаты лечения регистрировались у больных, которым первое введение препарата осуществляли не позднее чем через 6–8 ч от появления клинических проявлений заболевания.

Хроническая сердечная недостаточность

В зависимости от состояния пациента можно начать лечение "ударными" дозами по 5-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) в/в капельно со скоростью 4-5 г/ч в течение 3-5 дней, а затем перейти на в/в капельное введение (длительность инфузии не менее 30 мин) 1-2 г препарата, разведенного в 50 мл воды для инъекций, 2 раза/сут в течение
2-6 недель или сразу начать в/в капельное введение поддерживающих доз препарата Креатинфосфат (1-2 г в 50 мл воды для инъекций 2 раза/сут в течение 2-6 недель).

Интраоперационная ишемия миокарда

Рекомендуется курс в/в капельных инфузий длительностью не менее 30 мин по 2 г препарата в 50 мл воды для инъекций 2 раза/сут в течение 3-5 дней, предшествующих хирургическому вмешательству, и в течение 1-2 дней после него. Во время хирургического вмешательства Креатинфосфат добавляют в состав обычного кардиоплегического раствора в концентрации 10 ммоль/л или 2.5 г/л непосредственно перед введением.

Интраоперационная ишемия нижних конечностей

2-4 г препарата Креатинфосфат в 50 мл воды для инъекций в виде в/в быстрой инфузии до хирургического вмешательства с последующим в/в капельным введением 8-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) со скоростью 4-5 г/ч во время хирургического вмешательства и в период реперфузии.

Метаболические нарушения миокарда в условиях гипоксии

Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин

Эта реакция получила название - реакции Ломана. Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы - в первые несколько секунд.

После того, как запасы креатинфосфата будут исчерпаны примерно на 1/3, скорость этой реакции будет снижаться, а это вызовет включение других процессов ресинтеза АТФ - гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Расщепление креатинфосфата играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности - бег на короткие дистанции, прыжки, метание, тяжелоатлетические и силовые упражнения, продолжительностью до 20-30сек.

Гликолиз.

Гликолиз - процесс распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ.

C6H12O6(глюкоза) + 2H3PO4 + 2АДФ = 2C3H6O3 (молочная к-та) + 2АТФ + 2H2O.

Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными).

Но нужно сделать два важных замечания:

а) примерно половина всей выделяемой в данном процессе энергии превращается в тепло и не может использоваться при работе мышц. При этом температура мышц повышается до 41-42 градусов Цельсия,

б) энергетический эффект гликолиза не велик и составляет всего 2 молекулы АТФ из 1 молекулы глюкозы.

Гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 сек до 150сек. К ним относятся бег на средние дистанции, плавание 100-200м, велосипедные гонки, длительные ускорения.

Кислородное окисление.

Для полноценного включения в действие кислородного окисления глюкозы требуется больше времени. Скорость окисления становится максимальной лишь через 1,5-2 минуты работы мышц, этот эффект широко известен под названием "второе дыхание".



Распад глюкозы в присутствии кислорода идет сложным путем. Это многостадийный процесс, включающий в себя цикл Кребса и многие другие превращения, но суммарный результат может быть выражен следующей записью:

C6H12O6(глюкоза) + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H2О + 38АТФ

Т.е. распад глюкозы по кислородному (аэробному) пути дает в итоге с каждой молекулы глюкозы 38 молекул АТФ. То есть кислородное окисление энергетически в 19 раз эффективнее безкислородного гликолиза. Но за все надо платить - в данном случае платой за большую эффективность является затянутость процесса. Получение молекул АТФ при кислородном окислении возможно только в митохондриях, а там АТФ недоступна АТФазам, которые находятся во внутриклеточной жидкости - внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому АТФ из митохондрий доставляется во внеклеточную жидкость достаточно сложным путем, используя при этом различные ферменты, что в целом существенно замедляет процесс получения энергии.

Для полноты картины упомяну еще и о последнем пути ресинтеза АТФ - миокиназная реакция . В случае значительного утомления, когда возможности других путей получения уже исчерпаны, и в мышцах накопилось много АДФ, то из 2 молекул АДФ при помощи фермента миокиназа возможно получение 1 молекулы АТФ:

АДФ + АДФ = АТФ + АМФ.

Но эту реакцию можно рассматривать как "аварийный" механизм, который не очень эффективен и поэтому организм очень редко к нему прибегает и только в крайнем случае.

Итак, существует несколько способов получения молекул АТФ. Далее АТФ при помощи катионов кальция и АТФазы "заряжает" миозин энергией, которая используется для спайки с актином и для продвижения актиновой нити на один "шаг".

И здесь есть одна важная особенность.

Миозин может иметь различную (большую или меньшую) активность АТФазы, поэтому в целом выделяют различные типы миозина - быстрый миозин характеризуется высокой активностью АТФазы, медленный миозин характеризуется меньшей активностью АТФазы.

Собственно, поэтому и скорость сокращения мышечного волокна определяются типом миозина. Волокна, с высокой активностью АТФазы принято называть быстрыми волокнами, волокна, характеризующиеся низкой активностью АТФазы, - медленными волокнами.

Быстрые волокна требуют высокой скорости воспроизводства АТФ, обеспечить которую может только гликолиз, так как, в отличие от окисления, он не требует времени на доставку кислорода к митохондриям и доставку энергии от них во внутриклеточную жидкость.

Поэтому быстрые волокна (их еще называют белыми волокнами) предпочитают гликолитический путь воспроизводства АТФ. За высокую скорость получения энергии белые волокна платят быстрой утомляемостью, так как гликолиз, ведет к образованию молочной кислоты, накопление которой вызывает усталость мышцы и в конечном итоге останавливает ее работу.

Медленные волокна не требуют столь быстрого восполнения запасов АТФ и для обеспечения потребности в энергии используют путь окисления. Медленные волокна еще называют красными волокнами. Эти волокна окружены массой капилляров, которые необходимы для доставки с кровью большого количества кислорода. Энергию красные волокна получают путем окисления в митохондриях углеводов и жирных кислот. Медленные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение.

Итак, мы вкратце ознакомились с устройством и энергетическим обеспечением мышц, но нам осталось выяснить что же с мышцами происходит во время тренировки.

Микроскопические исследования показывают, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, наблюдается распад митохондрий, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (Морозов В.И., Штерлинг М.Д с соавторами).

Разрушение внутренней структуры мышечного волокна во время тренировки (т.е. микротравмы), приводит к появлению в волокне обрывков белковых молекул. Иммунная система воспринимает обрывки белка как чужеродный белок, тут же активизируется и старается их уничтожить.

Итак, на тренировках мы разрушаем свои мышечные волокна и тратим запасы АТФ.

Но мы ходим в тренажерный зал вовсе не для того, чтобы израсходовать энергию и получить микротравмы. Мы ходим, чтобы накачать мышцы и стать сильнее.

Это становится возможным только благодаря такому явлению, как суперкомпенсация (сверхвосстановление). Суперкомпенсация проявляется в том, что в строго определенный момент отдыха после тренировки уровень энергетических и пластических веществ превышает исходный дорабочий уровень.

Закон суперкомпенсации справедлив для всех биологических соединений и структур, которые в той или иной мере расходуются при мышечной деятельности. К ним относятся: креатинфосфат, структурные и ферментные белки, фосфолипиды, клеточные органеллы (митохондрии, лизосомы).

В целом, явление суперкомпенсации может быть отражено графиком (рис.3).

Рис.3. Суперкомпенсация. а) - разрушение /расходование во время тренировки, б) - восстановление, в) - сверхвосстановление, г) - возвращение к исходному уровню.

Как становится ясно из график, фаза суперкомпенсации длится достаточно короткое время. Постепенно уровень энергетических веществ возвращается к норме и тренировочный эффект исчезает.

Больше того, если проводить следующую тренировку до наступления фазы суперкомпенсации (рис.4, а), то это приведет только к истощению и перетренированности.

Если проводить следующую тренировку после фазы суперкомпенсации (рис.4, б), то следы предыдущей работы уже сгладятся и тренировка не принесет ожидаемого результата - увеличения мышечной массы и силы.

Чтобы добиться выраженного эффекта, нужно проводить тренировку строго в фазе суперкомпенсации (рис.4, в).

Рис. 4. Тренировочный эффект (черным выделены моменты тренировок). а) - слишком частые тренировки, истощение и перетренированность, б) - слишком редкие тренировки, никакого существенного эффекта, в) - правильный тренировки в момент суперкомпенсации, рост силы и мышечной массы.

Итак, из вышеизложенного ясно, что проводить тренировки надо в фазе суперкомпенсации.

Но тут мы встречаемся с одной сложной проблемой.

Дело в том, что соединения и структуры, которые расходуются или разрушаются при тренировке, имеют разное время восстановления и достижения суперкомпенсации!

Фаза суперкомпенсации креатинфосфата достигается через несколько минут отдыха после нагрузки.

Фаза суперкомпенсации содержания гликогена в мышцах наступает через 2-3 суток после тренировки, а к этому моменту уровень креатинфосфата уже вступит в фазу утраченной суперкомпенсации.

А вот для восстановления белковых структур клеток, разрушенных в ходе тренировок, может потребоваться еще больший период времени (до 7-12 дней), в течение которого уровень гликогена в мышцах уже вернется к исходному уровню.

Поэтому нужно в первую очередь определиться какой из этих параметров наиболее важен с точки зрения наращивания силы и мышечной массы, а каким из них можно и пренебречь.

Очевидно, что первым параметром, на который нужно ориентироваться в ходе тренировок является уровень креатинфосфата - ведь именно им обеспечивается силовая работа мышц.

Многие новички, да и профессиональные спортсмены сильно недооценивают важность теоритических знаний. Считается, что для обретения желаемого телосложения достаточно регулярно посещать тренажерный зал.

Лишь единицы догадываются, что основа всего - это теория. Ее правильное применение позволит стабильно прогрессировать, причем довольно быстрыми темпами!

Сегодня мы рассмотрим мышечную работу с точки зрения биохимии и физиологии. Знание такой теории необходимо для развития определенных характеристики (силы, выносливости и т.п.) а так же для составления тренировочных программ. Итак…

Все энергетические процессы в живом организме протекают благодаря расходу АТФ (аденозинтрифосфата ). АТФ – это важнейший нуклеотид, олицетворяющий собой энергообмен любой клетки, будь то умственная деятельность, работа внутренних органов человека или же мышечная активность.

Как таковых запасов АТФ у человека не наблюдается. Система энергообмена организма, используя кислород воздуха, ежесекундно синтезирует и расходует огромное количество АТФ.

Мышечное сокращение и расслабление так же происходит благодаря расщеплению АТФ, однако при интенсивной и длительной работе, простых вдохов становится недостаточно. Именно поэтому организм обладает многоуровневой системой мышечного энергообмена, каждый из которых последовательно сменяет другой:

  1. Система креатина и креатинфосфата (КрФ) – алактатный способ (отсутствует выделение побочного продукта лактата – молочной кислоты). Приоритетная активность – не более 10-12 секунд.
  2. Анаэробный гликолиз – лактатный способ (протекает с выделением лактата, то есть молочной кислоты). Приоритетная активность – 40-45 секунд.
  3. Аэробный гликолиз – окислительный способ (используется кислород, то есть побочные продукты не образуются). Приоритетная активность – от 50 секунд и более.

Прежде чем продолжить описание мышечного энергообмена, необходимо сказать несколько слов о расходе АТФ. Ресинтез АТФ возможен благодаря необычному строению данного нуклеотида.

Молекулы АТФ никогда не расщепляются полностью. Под действием фермента АТФазы аденозинтрифосфат подвергается гидролизу и тем самым отделяет от себя фосфатную группу – ортофосфорную кислоту (H 3 PO 4). Данный процесс ведет к высвобождению энергии и появлению остаточного продукта – аденозиндифосфата (АДФ).

Грубо говоря, АТФ можно назвать соединением с тремя фосфатными группами, а АДФ – с двумя. Благодаря наличию АДФ возможен ресинтез АТФ. Формула реакции выглядит следующим образом:

АТФ + H 2 O = АДФ + H3PO4 + энергия

Все способы поддержания нормального энергообмена будь то гликолиз или окисление, используют АДФ в качестве сырья для создания новых молекул АТФ. Это основной принцип биохимии данного процесса!

А теперь посмотрим, как происходит ресинтез АТФ из АДФ в каждом из способов.

Алактатный способ
Как уже говорилось выше, запасов АТФ практически не существует. Их хватает на первые несколько секунд работы высокой мощности. Чтобы обеспечить мышечную группу энергией организм буквально с первых секунд запускает систему креатина.

В организме человека хранится как простой креатин, так и схожее соединение связанное с фосфатной группой – креатинфосфат (КрФ). Вся уникальность КрФ заключается в способности этих кристаллов отделять от себя ортофосфорную кислоту. Под действием активного фермента креатинкиназы фосфат из КрФ переходит к соединению АДФ, вследствие чего образуется новая молекула АТФ. В то же время, оставшись без фосфатной группы, КрФ превращается в обыкновенный креатин, на который впоследствии при помощи ферментов и кислорода присоединяется новая молекула ортофосфорной кислоты. Данный процесс описывается реакцией Ломана:

АДФ + КрФ = АТФ + креатин

Максимальная алактатная мощность зависит от многих факторов: от скорости работы креатинкиназы, от интенсивности внешней нагрузки, от величины потребления энергии и т.п. Однако, несмотря на это, известно, что предельная длительность удержания максимальной мощности креатин-системы находится в диапазоне 6-12 секунд.

Следует помнить, что продолжительность предельной алактатной работы во многом зависит от запасов креатина в мышцах. Представьте аналогию с транспортировкой грузов. В нашем случае груз – это фосфатные группы, а креатин – грузовик перевозчик.

Наличие в вашей компании лишь 4-5 грузовиков не позволит совершать регулярные и быстрые перевозки. В то же время штат из 20-30 перевозчиков позволит наладить бесперебойную поставку грузов. Именно поэтому креатиновые добавки пользуются огромной популярностью. Их регулярный прием позволяет увеличить число «перевозчиков».

Стоит отметить, что количество креатина у тренированного человека в 1,5-2 раза превышает запасы данного соединения у обычного человека.

При нагрузке средней мощности запасов КрФ хватает на 20-30 секунд. Восстановление до исходного уровня происходит за 2-5 минут отдыха, с помощью обыкновенного кислорода. Этим объясняется появление отдышки (кислородного долга) сразу после выполнения тяжелого упражнения.

Лактатный способ
Гликолиз – это расщепление одной молекулы глюкозы на две молекулы лактата (молочной кислоты) , с соответствующим высвобождением энергии, которой хватает для ресинтеза двух молекул АТФ. Данный процесс протекает с помощью ферментов, непосредственно в саркоплазме мышечного волокна (клетки).

Главная особенность анаэробного гликолиза – отсутствие потребности в кислороде!

Энергетический потенциал и общая продуктивность данного способа выше, нежели система КрФ, однако и здесь есть ложка Дегтя. Взгляните на формулу:

C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ = 2C 3 H 6 0 3 + 2АТФ + 2H 2 O

В этой формуле:
- C 6 H 12 O 6 – глюкоза (виноградный сахар или декстроза),
- C 3 H 6 0 3 – молочная кислота (лактат).

Столь быстрый ресинтез АТФ ведет к появлению побочного продукта – молочной кислоты. Скорость вымывания лактата, как правило, ниже скорости его появления, вследствие чего с каждой секундой его становится все больше.

Недостаток лактата заключается в блокировании сигналов от мотонейронов. При достаточном скоплении молочной кислоты вы теряете способность иннервировать рабочую мышечную группу, т.е. вы не можете сократить или расслабить ее. Все это, в сумме с повышенной кислотностью, вызывает соответствующее чувство «жжения».

Отдых длительностью 4-5 минут позволяет утилизировать небольшую часть лактата, вследствие чего к вам возвращается мышечная работоспособность. Спустя несколько часов после тренинга, практически вся молочная кислота вымывается. Поэтому всевозможные заявления о том, что послетренировочные боли (крепатура) на следующие сутки вызваны остаточным лактатом – не более чем стереотип.

Гликолиз активизируется примерно на 15-20 секунде, а его пик приходится на 30-40 секунду непрерывной работы.

Максимальная лактатная мощность может длиться от 30 до 60 секунд. При этом существует огромное количество факторов влияющих на данную характеристику. Так, вы можете развивать способность мышц противостоять кислой среде вызванной лактатом, или же повышать количество накопленного в мышечной группе гликогена. Стоит помнить, что гликоген печени не используется для энергообеспечения мышц, так как не обладает нужной мобильностью.

Окислительный способ
При более длительной нагрузке реакция анаэробного гликолиза идет на спад и постепенно уступает место аэробному окислению. Данный процесс является самым эффективным с точки зрения энергообеспечения, так как в 19 раз эффективнее лактатного способа:

C 6 H 12 O 6 + 6O 2 + 38АДФ + 38H 3 PO 4 = 6СO 2 + 44H 2 O + 38АТФ

Окисление протекает в митохондриях расположенных в мышечных клетках (симпластах). Данный способ энергообеспечения возможен только при наличии кислорода, чем и обуславливается его длительная активация. Аэробный гликолиз запускается после 80-90 секунд непрерывной работы, а пик реакции наблюдается на 2-3 минуте нагрузки. Столь позднее участие окисления объясняется необходимостью запуска огромного числа различных процессов, обеспечивающих доставку кислорода к митохондриям. После трех минут аэробной активности, возникает утомление большинства активно работающих систем организма, в частности ЦНС и мотонейронов.

Практические выводы
Многие новички задаются вопросом, почему для развития силы рекомендуется выполнять 4-6 повторений, а для так называемой «массы» - 8-12. Внимательный читатель наверняка заметил, что длительность лактатного энергообмена соизмерима с 4-6 повторениями. В то же время пик анаэробного гликолиза достигается в промежутке 8-12 повторений.

Количество повторений отражает способ восполнения энергии и тренируемую функцию. Действительно, для развития силовых характеристик необходимо уделять внимание 4-6 повторениям, так как это тренирует суставы и связки, механизм Гольджи и, кроме того, увеличивает количество свободного КрФ.

Также силовой диапазон повторений развивает миофибриллярный аппарат. В общем и целом, повышается сила спортсмена, однако вместе с развитием данной характеристики ухудшается работа кровеносной системы, новые миофибриллы попросту вытесняют кровеносные сосуды. Повышение силы влияет на увеличение мускулатуры, но не так сильно, как тренировка гликолитических способностей мышц.

Регулярная анаэробная работа предельной мощности развивает целый каскад характеристик. Принято считать, что именно 8-12 повторений ведут к гипертрофии мышечных волокон (клеток). Тренировки такого типа способствуют заметному увеличению мускулатуры и соответствующему развитию кровеносной системы.

Грубо говоря, именно 8-12 повторений в каждом подходе, заставляют ваши мышцы увеличиваться в размерах!

Что касается окислительных возможностей мышц, то, как правило, бодибилдеры уделяют внимание такой нагрузке лишь в процессе «сушки» - похудения за счет снижения процента жира в организме. Вклад окисления в развитие мышечных волокон минимален. Однако в то же время именно длительные тренировки, использующие окислительный способ энергообмена, ведут к заметному повышению выносливости, во многом за счет появления новых митохондрий и превращения промежуточных типов мышечных волокон в окислительные.

Итоги
Из всего вышесказанного можно сделать довольно простые выводы:

  • Если вы развиваете силу, используйте систему креатинфосфата (подход в этом случае должен длиться не более 20 секунд);
  • Если вы стремитесь к увеличению мускулатуры и развитию силовой выносливости, тренируйтесь в анаэробном лактатном режиме;
  • Если вы улучшаете выносливость, уделите внимание окислительному энергообмену. В то же время это позволит сжечь подкожный жир.
Однако никогда не зацикливаетесь на развитии только одной тренировочной функции. Запланированное чередование количества повторений (систем энергообмена) в том или ином цикле тренинга является основным принципом периодизации нагрузок, который заложен в любой правильной тренировочной схеме.

Среди высокоэнергетических фосфорилированных соединений имеется одно, играющее особую роль в энергетике возбудимых тканей, таких, как мышечная и нервная. Это соединение, креатинфосфат, или фосфокреатин (рис. 14-13), служит резервуаром высокоэнергетических фосфатных групп. гидролиза креатинфосфата несколько превышает гидролиза АТР.

Креатинфосфат может передавать свою фосфатную группу на ADP в реакции, катализируемой креатинкиназой:

Благодаря креатинфосфату концентрация АТР в мышечных клетках поддерживается на постоянном и притом довольно высоком уровне. Особенно это существенно для скелетных мышц, работающих с перерывами, но иногда очень напряженно с большой скоростью. Всякий раз, когда часть АТР мышечной клетки расходуется на сокращение, в результате гидролиза АТР образуется ADP. Креатинфосфат при участии креатинкиназы быстро передает свою фосфатную группу молекулам ADP, и нормальный уровень АТР восстанавливается. Содержание креатинфосфата в мышцах в 3-4 раза превышает содержание АТР (табл. 14-4); поэтому в форме креатинфосфата может храниться достаточное количество фосфатных групп, полностью обеспечивающее поддержание постоянного уровня АТР в короткие периоды усиленной мышечной активности.

Рис. 14-12. В ресничках и жгутиках эукариотических клеток механическая сила развивается за счет использования АТР. А. Поперечный разрез реснички. Эти структуры состоят из девяти пар микротрубочек, образующих наружное кольцо, и двух одиночных центральных микротрубочек (расположение по типу «9 + 2»; разд. 2.16). Реснички окружены оболочкой, представляющей собой вырост клеточной мембраны. Энергию для характерных движений ресничек (волнообразного, скользящего или вращательного) поставляет гидролиз АТР. Эти движения осуществляются ресничками за счет скольжения или скручнвання парных микротрубочек, которое весьма напоминает наблюдаемое в скелетных мышцах АТР-зависимое скольжение толстых и тонких нитей друг относительно друга. От наружных (парных) микротрубочек отходят находящиеся на равном расстоянии друг от друга отростки, или выступы, напоминающие миозиновые головки в толстых нитях мышц. Эти выступы состоят из молекул динеина - довольно крупного белка, обладающего АТРазной активностью. Катализируемый динеином гилролиз АТР поставляет энергию для механического движения - скольжения или скручивания микротрубочек. Было высказано предположение, что центральные микротрубочки регулируют скорость движения ресничек. Б. Отдельные фазы биения реснички в жабрах морского червя, у которого реснички имеют длину около 30 мкм. Эти характерные движения сообщает ресничкам АТР-зависимое скольжение трубчатых нитей друг относительно друга.

Рис. 14-13. Креатинфосфат в мышцах играет роль запасного донора высокоэнергетических фосфатных групп. Он действует как своеобразный буфер, обеспечивающий постоянство концентрации АТР.

Благодаря обратимости креатинкиназной реакции накопившийся креатин в период восстановления вновь фосфорилируется за счет АТР до креатинфосфата. Поскольку другого метаболического пути для образования и расщепления креатинфосфата не существует, это соединение хорошо приспособлено для выполнения своей функции - резервуара фосфатных групп.

В мышцах многих беспозвоночных роль носителя резервной формы энергии выполняет не креатинфосфат, а аргипипфосфат. Соединения, служащие, подобно креатинфосфату и аргининфосфату, запасными источниками энергии, носят название фосфагенов.

14.16. АТР поставляет энергию также и для активного транспорта через мембраны

Химическая энергия АТР используется также и для выполнения осмотической работы, т.е. работы, необходимой для переноса каких-либо ионов или молекул через мембрану из одного компартмента в другой, в котором их концентрация выше. Мы можем рассчитать количество свободной энергии, необходимое для переноса 1 моль неионизованного растворенного вещества через мембрану, например из окружающей среды в клетку, если нам известны концентрации растворенного вещества в несвязанной форме в окружающей среде и в клетке (рис. 14-14). Для такого расчета воспользуемся общим уравнением

где - молярная концентрация данного растворенного вещества в окружающей среде, - его молярная концентрация в клетке, R - газовая постоянная и Т - абсолютная температура. Пользуясь этим уравнением, можно определить количество свободной энергии, необходимое для того, чтобы переместить 1 моль глюкозы против стократного градиента концентрации, например из среды с исходной концентрацией глюкозы в компартмент, где ее конечная концентрация составит . Подставляя в уравнение соответствующие значения, получаем

Рис. 14-14. Активный транспорт растворенного вещества против градиента концентрации. Начиная с момента равновесия, т.е. с того момента. когда концентрации данного растворенного вещества в обоих компартментах одинаковы, активный транспорт вещества из одного компартмента в другой обеспечивает его перемещение против градиента концентрации. Для создания и поддержания градиента концентрации какого-либо растворенною вещества между компартментами, находящимися по обе стороны мембраны, требуется затрата свободной энергии. Если энергия почему-либо перестает поступать, то вещество из компартмента с более высокой его концентрацией начинает диффундировать обратно, и диффузия продолжается до тех пор. пока снова не установится равновесие, т. е. пока концентрации вещества по обе стороны мембраны не сравняются.

Изменение свободной энергии выражается в этом случае положительной величиной, и это значит, что 2,72 ккал свободной энергии, которые требуются для переноса 1 моля глюкозы (или любого нейтрального вещества) против стократного градиента концентрации, должны быть переданы системе за счет какой-то сопряженной реакции, способной служить источником энергии.

Градиенты концентрации между двумя сторонами клеточных мембран (трансмембранные градиенты) варьируют очень сильно. Пожалуй, максимальный градиент концентрации в организме поддерживается плазматической мембраной обкладочных клеток слизистой оболочки желудка, секретирующих соляную кислоту в желудочный сок. Концентрация в желудочном соке может достигать тогда как концентрация ионов в клетках составляет приблизительно . Это означает, что обкладочные клетки обладают способностью секретировать ионы водорода даже против градиента порядка . По-видимому, эти клетки имеют какие-то очень активные мембранные «насосы» для секреции ионов водорода, так как для поддержания столь высокого градиента концентрации требуется значительное количество энергии. Перенос веществ через мембраны против градиента концентрации называют активным транспортом. Образование желудочной стимулируется особым, связанным с мембраной ферментом - так называемой -транспортирующей АТРазой. При образовании желудочного сока на каждую молекулу цитозольного АТР, гидролизованного до ADP и фосфата, из цитозоля наружу через плазматическую мембрану выводятся два иона .

Другим важным примером активного транспорта может служить перенос ионов через плазматическую мембрану во всех животных клетках. Лучше всего изучен этот процесс в эритроцитах. Установлено, что концентрация в цитозоле эритроцитов достигает примерно тогда как в плазме крови она составляет всего . В то же время концентрация в плазме крови достигает а в эритроцитах она равна приблизительно . Для поддержания столь высоких трансмембранных градиентов требуется энергия АТР. В мембране эритроцита содержится специализированный фермент, получивший название -транспортирующей АТРазы, который функционирует и как фермент, и как молекулярный насос. Эта АТРаза катализирует гидролитическое расщепление АТР до ADP и фосфата, а высвобождающуюся при этом свободную энергию использует для перекачивания ионов из окружающей среды внутрь клетки, а ионов из клетки в окружающую среду (рис. 14-15). Стадией, на которой происходит передача энергии в этом процессе, является перенос концевой фосфатной группы АТР на молекулу -АТРазы.

Рис. 14-15. Схема, поясняющая действие -АТРазы. Для транспорта в клетку (где его концентрация выше, чем в окружающей среде) и транспорта из клетки в окружающую среду (где концеш рация этих ионов выше, чем в клетке) требуется свободная энергия. Источником ее служит гидролиз АТР. На каждую молекулу АТР, гидролизованного до ADP и из клетки выходят три иона и два иона поступают в нее из окружающей среды. Этот транспорт ионов включает два этапа. На первом этапе молекула АТРазы фосфорилируется под действием АТР. и это позволяет ей присоединить ион На втором этапе присоединяется ион следствием чего оказывается перенос и К через мембрану с отщеплением свободного фосфата, поступающего в цитозоль. АТР и продукты его гидролиза (ADP и ) остаются в клетке.

Креатинфосфорная кислота (креатинфосфат , фосфокреатин) - 2-[метил-(N"-фосфонокарбоимидоил)амино]уксусная кислота. Бесцветные кристаллы, растворимые в воде, легко гидролизуется с расщеплением фосфамидной связи N-P в кислой среде, устойчива в щелочной.

Кислота была открыта Филиппом и Грейс Эгглтонами из Кембриджского университета и независимо Сайрусом Фиске и Йеллапрагадой Суббарао из Гарвардской медицинской школы в 1927 году.

Лабораторный синтез - фосфорилирование креатина POCl 3 в щелочной среде.

Креатинфосфат - продукт обратимого метаболического N-фосфорилирования креатина , являющийся, подобно АТФ , высокоэнергетическим соединением. Однако, в отличие от АТФ, гидролизуемой по пирофосфатной связи O-P, креатинфосфат гидролизуется по фосфамидной связи N-P, что обуславливает значительно больший энергетический эффект реакции. Так, при гидролизе изменение свободной энергии для креатина G 0 ~ −43 кДж/моль, в то время как при гидролизе АТФ до АДФ G 0 ~ −30.5 кДж/моль.

Креатинфосфат содержится преимущественно в возбудимых тканях (мышечная и нервная ткани) и его биологической функцией является поддержание постоянной концентрации АТФ за счёт обратимой реакции перефосфорилирования:

креатинфосфат + АДФ ⇔ креатин + АТФ

Эта реакция катализируется цитоплазматическими и митохондриальными ферментами-креатинкиназами; при расходе (и, соответственно, падении концентрации) АТФ, например, при сокращении клеток мышечной ткани, равновесие реакции сдвигается вправо, что ведёт к восстановлению нормальной концентрации АТФ.

Концентрация креатинфосфата в покоящейся мышечной ткани в 3-8 раз превышает концентрацию АТФ, что позволяет компенсировать расход АТФ во время кратких периодов мышечной активности, в период покоя при отсутствии мышечной активности в ткани идёт гликолиз и окислительное фосфорилирование АДФ в АТФ, в результате чего равновесие реакции смещается влево и концентрация креатинфосфата восстанавливается.

В тканях креатинфосфат подвергается самопроизвольному неферментативному гидролизу с циклизацией в креатинин , выводящийся с мочой , уровень выделения креатинина зависит от состояния организма, меняясь при патологических состояниях, и является диагностическим признаком.

Креатинфосфат является одним из фосфагенов - N-фосфорилированных производных гуанидина , являющихся энергетическим депо, обеспечивающим быстрый синтез АТФ. Так, у многих беспозвоночных (например, насекомых) роль фосфагена играет аргининфосфорная кислота , у некоторых кольчатых червей - N-фосфоломбрицин.


Самое обсуждаемое
Зимние олимпийские игры 1998 хоккей финал Зимние олимпийские игры 1998 хоккей финал
Начнем без шипулина. и без цветкова. результаты отбора на стартовые этапы кубка мира удивили. Шипулин поторопился и проиграл Начнем без шипулина. и без цветкова. результаты отбора на стартовые этапы кубка мира удивили. Шипулин поторопился и проиграл
Конспект НОД в старшей группе Конспект НОД в старшей группе "Зимние виды спорта" Нод развитие речи зимние виды спорта


top